Agenda

- 130 Convene, Welcome, Intro, Guiding Principles
- 140 FTL Background—History, partners, process, curriculum
- 150 Barriers to Implementation
- 210 Economics of LID
- 245 15 Minute Break
- 300 FTL Curriculum Components
- 305 FTL ppt + discussion
- 340 Manual and Facilitated process+ discussion
- 420 Adjourn

Curriculum Elements

- 30 min PowerPoint Presentation
 - Delivery Guide
 - Facilitation Guide
- Resource Manual
 - Stand Alone Chapters
 - Chapter Summary Sheet
- Web Accessed Materials
- Train-the-trainer

FORGING THE LINK

Linking the Economic Benefits of Low Impact Development and Community Decisions

Todd Janeski, Virginia Commonwealth University Robert Roseen, PE, PhD, James Houle, CPSWQ, University of New Hampshire Stormwater Center Michael Simpson, Antioch University New England

Guiding Principles

Demonstrate the value of Low Impact Development (LID) within the context of Forging the Link:

- The ecological benefits of LID with respect to protection of water quality, aquatic habitat and watershed health
- The economic benefits of using a combination of grey and green infrastructure to manage stormwater
- The capability of LID to be used as a climate change adaptation planning tool to minimize the stress to urban stormwater infrastructure.

Coastal Population Changes

Coastal Population Changes

Population Growth and Development: 1990 - 2000

Population Growth and Development: 1990 - 2000

Population Growth and Development: 1990 - 2000

Balancing Development and Open Space

Water and Land Cover

Bottom Line?

Economic based incentives for early adoption: Many Communities are struggling with the costs of treating stormwater runoff

\$200,000 Ponds
\$160,000 Clearing
& Grading
\$ 60,000 Swales

= \$420,000 Cost Savings

+ \$90,000 Value (2 additional lots)

Slide: Chesapeake NEMO

Economic based incentives for early adoption: Many Communities are struggling with the costs of treating stormwater runoff

25% Savings

Lower Development Cost (\$7,000 avg)

Quicker Sales (50% Faster)

Higher Home Values (12-16%)

Boulder Hills Subdivision, NH

Boulder Hills Subdivision, NH

Boulder Hills Subdivision, NH

\$5,000 in Site Preparation
\$72,000 Drainage
\$6,500 Curbing Reductions
\$19,500 Permanent Erosion Control
NET Savings: \$50,000
approx 6% of the total project

Greenland Meadows Commercial Development, NH

Greenland Meadows Commercial Development, NH

11/19/10

Greenland Meadows Commercial Development, NH

\$71,000 Earthwork \$1,750,000 Stormwater NET Savings: \$930,000 or 26% of the project stormwater costs

Reducing Stormwater Costs through Low Impact Development (LID) Strategies and Practices

Table 1. Cost Comparisons Between Conventional and LID Approaches

	Conventional			
Project Consital convinge ranged from enceb				
2 nd Ave Capital Savings ranged nom <u>%</u>				
Auburn	1 - 0	00/		%
Belling	T2-9	U%		%
Bellingham Bioeder Donovan Park	\$52,800	\$12,800	\$40,000	76 <mark>%</mark>
Gap Creek	\$4,620,600	\$3,942,100	\$678,500	15%
Garden Valley	\$324,400	\$260,700	\$63,700	20%
Kensington Estates	\$765,700	\$1,502,900	-\$737,200	-96%
Laurel Springs	\$1,654,021	\$1,149,552	\$504,469	30%
Mill Creek ^c	\$12,510	\$9,099	\$3,411	27%
Prairie Glen	\$1,004,848	\$599,536	\$405,312	40%
Somerset	\$2,456,843	\$1,671,461	\$785,382	32%
Tellabs Corporate Campus	\$3,162,160	\$2,700,650	\$461,510	15%

^a Some of the case study results do not lend themselves to display in the format of this table (Central Park Commercial Redesigns, Crown Street, Poplar Street Apartments, Prairie Crossing, Portland Downspout Disconnection, and Toronto Green Roofs). ^b Negative values denote increased cost for the LID design over conventional development costs. ^c Mill Creek costs are reported on a per-lot basis.

Estimated \$144M for Grey Solution

\$11M in Green Infrastructure Reduced cost estimate by \$63M

Estimated \$81M budget

Estimated \$6B for City-wide Grey Solution Middle Blue River estimated \$54M

Estimated \$35M for Green Solution Still meet overflow goal 6/yr

Chicago, Illinois

Chicago, Illinois

Chicago, Illinois

Eliminated 70M gallons of stormwater in 2009

Chicago, Illinois

B

Spring 1971 -2000						
24hr	return period (years)	Р	baseline -95% conf	baseline	baseline +95% conf	
	1	0.1	2.44	2.68	2.94	
	2.5	0.6	4.14	4.78	5.45	
	5	0.8	5.12	6.21	7.43	
	7.5	0.8667	5.66	7.06	8.73	
	10	0.9	6.04	7.69	9.73	
	25	0.96	7.25	9.88	13.52	
	50	0.98	8.19	11.76	17.15	
Compared to 1926-1955	75	0.98667	8.74	12.96	19.66	
28% increase in amount	100	0.99	9.14	13.87	21.64	Previous 75vr
1% decrease in rainy days	250	0.996	10.45	17.09	29.27	now 25yr
	500	0.998	11.47	19.90	36.67	
	750	0.99866 7	12.08	21.71	41.81	Previous 25yr Now 10yr
	1000	0.999	12.52	23.07	45.87	
						0

New England Floods, Spring 2005

Predicting Future Changes: Greenhouse Gas Emissions Scenarios

"Scenario Family"	Description
A1 – Rapid Growth A1FI - Fossil Intensive A1T - Non-fossil A1B – Balanced	Second Highest Greenhouse Emissions
A2 – Heterogeneous High Population Growth Slow Economic and Technology Change	Highest Greenhouse Emissions
B1 – Convergent World Same Population as A1, more service and information technology.	Lowest Greenhouse Emissions
B2 – Intermediate Population growth, local solutions.	Second Lowest Greenhouse Emission

Special Report on Emissions Scenarios, IPCC 2000

- Winter precipitation is projected to increase more dramatically increasing between 20 to 30 percent by the end of the century.
- Compared with the past few decades, a greater proportion would be expected to fall as rain rather than as snow.

Source: NECIA climate report 2006

- Average temperatures across the Northeast have risen more than 1.5 degrees (°F) since 1970,
- winters have warmed most rapidly —4°F between 1970 and 2000.
- If higher emissions models project average temperatures across New Hampshire are to rise 9°F to 13°F above historic levels in winter and 6°F to 14°F in summer by latecentury,

Source: NECIA climate report 2006

Projected Climate Changes in the Great Lakes Region by 2100

- Temperature
 - 40+ days exceeding 90
 - 10-25 days exceeding 97
- Precipitation
 - Winter, spring increasing
 - Summer, fall decreasing
 - Drier soils, more droughts
- Ice cover decline will continue

NORTH FORK HOLSTON RIVER

Transportation Networks: Low lying roads or bridges

Sewer Infrastructure

Aquatic habitat

Dealing with Climate Change

Make your community more climate resilient

- Protect resources/systems
 from climate change impacts
- Accommodate or adapt to expected changes
- Abandon or retreat when accommodation and protection are not feasible

Sequence of Key Climate Change Questions

- 1. What changes in climate are expected?
- 2. How will these changes impact the watershed environments in which managers operate?
- 3. How vulnerable are communities and managers to these changes in the watershed environment?
- 4. What can and should communities do to manage the high risk vulnerabilities?

What is Adaptation?

Definition – *Adaptation* is any action or strategy that reduces vulnerability to the impacts of climate change. The main goal of adaptation strategies is to improve local community *resilience*, or the ability of a community to bounce back quickly from climate impacts

Community Resiliency and Infrastructure

B

Source: Antioch University of New England, 2009

egend CN RANGES Oyster_Watershed_HUC12 1st Order Stream 29-39 Estuary 2nd Order Stream 39-65 Towns within Watershed 3rd Order Stream 77-94 NH DOT Roads 4th Order Stream 94-100

NH Town Boundaries

Techniques

- 2nd Order Streams
- 3rd Order Streams
- 4th Order Streams

MAP KEY

- Oyster River Watershed Boundary (HUC12 Def)
- NH Town Boundaries

f) 1st Order Streams
 2nd Order Streams
 3rd Order Streams
 4th Order Streams

Replace Culvert?

Community Resiliency and Infrastructure

LID analysis		total cost		u	upgrade Cost		voided	% Change	
	scenario	for upgrade		,	w/ LID		Cost	(decrease)	_
SPRING	BASE SP Current Ant 2	\$	36,016	\$	-	\$	36,016	100%	
	A1B SP Current Ant 2	\$	36,016	\$	21,242	\$	14,773	41%	
	A1Fi SP Current Ant 2	\$	57,063	\$	41,180	\$	15,883	28%	
	Impleme	er	nting	\$	D .899	\$ \$	38 576 48 793	37% 24%	
		3.05.1		5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	000	1		mean	46%
		AV	'e ov	er	30	10			
FALL	BASE FA Current Ant 2	\$	88,264	\$	50,446	3	37,818	43%	
	in Munic	211	204,293	\$	152,590	\$	703	25%	
		ור	Jar	<u>ې</u>	222,207	Þ.	12,089	5%	
	Infractru		turo	0	ete	\$	12,089	5%	
	แแลวแป	1U	ult	UU	515	\$	51,537	16%	
						mea	an (total)	mean 32%	20%
								ę	3

Cost Development

Quantities and costs of culverts to be upgraded

Extrapolated to entire community, would be approximately

\$ 2 million to upgrade all culverts

FORGING THE LINK

Linking the Economic Benefits of Low Impact Development and Community Decisions

Todd Janeski, Virginia Commonwealth University Robert Roseen, PE, PhD, James Houle, CPSWQ, University of New Hampshire Stormwater Center Michael Simpson, Antioch University New England

